Home/Resources
Resources2019-11-02T19:31:34+00:00

RESOURCES

Engineering Precious Metals

Categories: Popular Press|Tags: |

Precious metals may seem unlikely as engineering materials, but the same expensive metals used for coinage and jewelry also satisfy applications requiring the ultimate in corrosion resistance or electrical conductivity – Machine Design

Read More

A Strategic Approach to Rare-Earth Elements as Global Trade Tensions Flare

Categories: Popular Press|Tags: |

China dominates production of the rare-earth metals that are vital to many green technologies. That doesn’t need to be a problem for other countries. GTM (Green Tech Media)

Read More

A New Kind of Gold Rush

Categories: Popular Press|Tags: |

What’s in your stuff? Most of us give no thought to the materials that make modern life possible. Yet technologies such as smartphones, electric vehicles, large screen TVs and green energy generation depend on a range of chemical elements that most people have never heard of. Until the late 20th century, many were regarded as mere curiosities – but now they are essential. In fact, a mobile phone contains over a third of the elements in the periodic table. World Economic Forum

Read More

UW, Testbeds to install world’s first roll-to-roll inkjet printer for electronics with sub-micron features

Categories: Funded Projects|

Contact:

J. Devin MacKenzie: jdmacken@uw.edu
University of Washington
Materials Science & Engineering

BACKGROUND

Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM) awarded $631K to Testbeds to install world’s first roll-to-roll inkjet printer for electronics with sub-micron features

UW Professor J. Devin MacKenzie will use the printer to develop cheap, sustainable alternatives to rare-earth materials used in solar panels, displays, and touchscreens.

The Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM), a Washington state research collaborative, has awarded $631K to University of Washington (UW) materials science & engineering and mechanical engineering Associate Professor J. Devin MacKenzie and the Washington Clean Energy Testbeds (WCET). MacKenzie will use the funds, which UW will supplement with $187K, to purchase and install an ultra-high-resolution electronics printer developed at SIJ Technology, Inc. and Japan’s National Institute of Advanced Industrial Science and Technology. When integrated with the existing roll-to-roll printer at the Testbeds, it will be the first system capable of high-throughput printing at sub-micron feature sizes. The printer will be available to academic and industry users of the Washington Clean Energy Testbeds for research and development, prototyping, and commercial manufacturing. Advances in printed electronics will allow next-generation electronic devices to be sustainably manufactured with earth-abundant materials.

On the left is a scaled diagram of a conventional inkjet printer drop compared to a femtoliter drop from the SIJ printer funded by JCDream. Using such small drops, this new tool can produce the same device using 10,000 times less material in devices that can be transparent to the human eye and be transparent to sunlight in a solar panel.

“We can’t wait to see the impact of this revolutionary additive manufacturing tool in the Testbeds thanks to JCDREAM,” said MacKenzie, Washington Research Foundation Professor of Clean Energy. “Our users can print electronics using sustainable materials with finer control than ever before, and it will directly enable UW and industrial researchers to develop a sustainable alternative for a crucial element of flexible thin-film solar cells, displays and touch screens. This printer, the first of its kind in the world, can also be used to make improved sensors and higher power batteries.”

UW models have shown that electrodes made of earth-abundant materials can be patterned with micron-scale features — smaller than can be seen by the human eye — to make them competitive with vacuum-deposited conventional ITO electrodes.  MacKenzie’s research group can now create this alternative using the advanced capabilities of the JCDREAM-funded printer, as conventional inkjet electronics printers are limited to 20-50 micron features.  The UW team has already demonstrated printing of conductive electrodes from nanoparticle metal inks at <2 micron in linewidth.  That’s about one quarter the size of a single red blood cell. They will develop copper-based transparent electrodes with nanoscale features that will match or exceed the conductivity and transparency of conventional ITO electrodes. The additive printing process will also eliminate the etching process, reducing negative environmental impacts of the runoff as well as the amount of starting raw material.

Ultimately, MacKenzie’s group aims to create a pathway to sustainable, scalable manufacturing of thin-film solar cells. Currently, indium is a limiting factor for thin-film solar cells due to its cost, toxicity, and long environmental life cycle. The copper-based transparent electrodes could also be used in flat-panel TVs, smartphones, and car windshields. Along with the copper-based alternative to indium electrodes that his group is developing, MacKenzie believes that the revolutionary printing system will enable sustainable solutions for batteries, sensors, fuel cells, and catalysts that rely on lithium, palladium, and cobalt.   Staff scientists from the WCET and MacKenzie’s group at UW have already trained more then 10 external users, bringing in startup companies and academic users developing new solar, sensors, and electronics technologies from Silicon Valley, Stanford, CalTech and Berkeley as well as local manufacturing companies.   UW research on the tool has already begun using this new capability to print new optical ‘metasurfaces’, films that can be made into ultrathin lenses and elements of optical computing.  The tool has also been used to create early prototypes of quantum materials as part of a drive to establish a National Science Foundation Science and Technology Center to create “Modern Optoelectronic Materials on Demand”.

“As a cleantech-focused facility that serves academic researchers, startups, and developed companies, the Testbeds are a perfect guidepost for JCDREAM’s mission,” said JCDREAM’s interim executive director David Field. “Our relationship with the Testbeds and other state-supported institutes is crucial to our success. We can’t wait to see the sustainably-sourced and sustainably-produced electronics that Testbeds users will create with this printer.”

JCDREAM is a research collaborative between Washington State University, UW, and the Pacific Northwest National Laboratory, with additional involvement from academic, government, and industrial institutes in the state that are involved in education, research, or manufacturing. It was established in 2015 to stimulate innovation in the use of earth-abundant materials alongside Washington state’s strong clean energy and transportation industries. The upgrade to the Testbeds is just one element of JCDREAM’s program of research, development, deployment, and training, with the goal of national leadership on the challenge posed by unsustainable use of resources and rare earth minerals.

Top left: Professor J. Devin Mackenzie with the roll-to-roll printer at the Washington Clean Energy Testbeds.

Top right: The R&D printer developed at Japan’s AIST and SIJ Technologies being installed in the Testbeds.

Bottom left: a microscope image of printed metal lines 1.75 and 2 micron wide that are so small they are invisible to the naked eye.

Bottom right: A larger custom multinozzle version is being prototyped now and the multinozzle heads will enable integration with flatbed and roll-to-roll printers for the first time.

Can engineers create an airplane component or an automotive part from dust? They can, if it’s metal dust.

Categories: Funded Projects|

Contact:

Dwayne Arola: darola@uw.edu
University of Washington
Materials Science & Engineering

BACKGROUND

That’s the capability of the new state-of-the-art metal 3-D printing system developed by EOS and recently acquired by UW. A team of engineering faculty, led by PI Dwayne Arola, secured funding from JCDream and the EOS company to purchase the system. In tandem with existing technology on campus, the system will supply students with unique access to the latest metal manufacturing techniques, making them uniquely prepared to tackle problems in the workforce.

The system uses Selective Laser Melting (SLM) to produce extremely high quality metal components from metal powders such as aluminum, nickel and titanium alloys. Components are produced according to a layer-by-layer fabrication, in which each layer of powder is selectively melted by a high power laser beam according to the desired part geometry.

SLM and other 3-D additive manufacturing processes have generated great interest among engineers because they remove the usual design constraints. In traditional manufacturing methods, engineers must create designs using simple geometric shapes. 3-D additive manufacturing opens up the possibilities. “This method of manufacturing lets you develop shapes that would be otherwise impossible,” says Arola, associate professor of Materials Science and Engineering. “You can create a shape that has almost unlimited geometry.” This freedom, he says, “has captured the imagination of many engineers.”

Because the 3-D printing additive manufacturing process is so new, most manufacturers don’t know how best to utilize it. What’s more, the expense of acquiring a system and doing research is generally prohibitive. That’s where the UW comes in: companies will be able to access the printer for research. The acquisition of the new printer complements a second 3-D additive manufacturing printer, which uses electron beam melting, acquired in 2018. “If we even had one of these printers, it would be a dream,” says Arola. “With access to both systems, students will be able to learn cutting edge skills and gain insight into how the technology functions. Companies are trying to figure out which system best suits their needs; our students will have the answers.”

“Being exposed to this technology, and having the opportunity to transform a design from a digital model to an actual real composite part, will provide unprecedented opportunity for our students to be competitive in the job market,” says Marco Salviato, assistant professor of aeronautics and astronautics.

The new printer will also facilitate inter-department collaboration at UW, allowing faculty to achieve more ambitious research goals. For example, aeronautics and astronautics engineers know how to design structures that fulfill the requirements of their field, while materials science engineers understand the materials science aspects of additive manufacturing. Their collaborative research, says Arola, will now not merely be theoretical. “We will do more than just talk – we can print.”

High-throughput X-ray Diffractometer at Western Washington University for Structural Analysis of Earth Abundant Materials

Categories: Funded Projects|

Contact:

Mark Bussell: bussell@wwu.edu
Western Washington University
College of Science & Engineering

BACKGROUND

With a $93,000 grant from the Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM), Western Washington University has purchased and recently installed a Rigaku MiniFlex 6G X-ray diffractometer for the structural analysis of earth-abundant materials. WWU provided $30,000 in matching funds to support the purchase of the MiniFlex 6G diffractometer, which is a tabletop instrument optimized for rapid structural analysis of powdered materials important for clean energy and geologic materials research. The diffractometer uses a beam X-ray to probe the positions of atoms within the structure of crystalline materials, yielding information on the purity, phase composition and crystallite size of a wide range of materials. According to WWU Professor Mark Bussell, the principal investigator on the grant, the MiniFlex 6G diffractometer has dramatically increased the throughput of structural analysis by students and faculty at WWU, as well as community college partners like Whatcom Community College.

An example research project in which the MiniFlex 6G diffractometer plays a key role is the structural analysis of newly developed photocatalysts for solar fuels production. The photocatalysts, composed of indium and gallium phosphides and oxides, are showing promise for converting carbon dioxide (CO2) to solar fuels such as methanol (CH3OH) under simulated sunlight without the use of precious metals such as platinum or palladium. One photocatalyst formulation under investigation In Professor Bussell’s laboratory consists of indium phosphide (InP) nanoparticles anchored onto titanium dioxide (TiO2) as shown schematically in Figure 2. X-ray diffraction analysis of the InP/TiO2 photocatalyst (Figure 3) confirms the crystalline nature and phase purity of the InP and TiO2 components and allows determination of the InP crystallite size to be 22 nanometers in diameter.

The MiniFlex 6G X-ray diffractometer is currently being used by 12 different users in 7 research groups at WWU as well as one lab group from Whatcom Community College. In addition to its use in research, the X-ray diffractometer will be used in laboratory courses at WWU and Whatcom CC starting in Fall 2019 with remote usage by students at Peninsula College in the planning stages.

Top Left: Figure 1. WWU M.S. student Daniel Korus loading a sample of CuInS2/ZnS core-shell quantum dots into the Rigaku MiniFlex 6G X-ray diffractometer.

Top Right: Figure 2.Schematic representation of an InP/TiO2 photocatalyst composed of InP nanoparticles anchored to a TiO2 support material.

Bottom Left: Figure 3. (Left) X-ray diffraction pattern of an InP/TiO2 photocatalyst along with reference patterns for InP and the TiO2 support material. (Right) WWU Professor Mark Bussell and Whatcom Community College student Sam Baldwin analyzing the X-ray diffraction pattern of a nanocrystalline TiO2 support material.

WWU JEOL field-emission scanning electron microscope (FESEM)

Categories: Funded Projects|

Contact:

Mark Bussell: bussell@wwu.edu
Western Washington University
College of Science & Engineering

BACKGROUND

JCDREAM provided substantial funds for Western Washington University to acquire its JEOL field-emission scanning electron microscope (FESEM).  This new FESEM was installed in the fall of 2017 and is overseen by Scientific Technical Services, a division that services the entire University with support for research and teaching.  The JEOL FESEM provides an array of imaging capabilities including nanometer resolution, in-lens imaging and scanning transmission electron microscopy (STEM) imaging.  The accompanying Oxford energy-dispersive spectrometer (EDS) with a large-area silicon drift detector provides rapid quantitative elemental analysis.  These capabilities are leading to significant advances in understanding materials pertinent to a broad range of scientific disciplines, including earth and planetary sciences, engineering and design, chemistry and materials science.

Research on the FESEM is largely conducted by undergraduate and graduate students.  The JEOL is also introduced to students in several materials-related classes, and is an integral part of a new electron microscopy course offered annually through Western’s Materials Science program.  The JEOL SEM not only advances the cutting-edge science of over a dozen faculty researchers, but provides hands-on applicable skills to the next generation of materials scientists.

Representative applications:

The FESEM is used extensively by Dr. Ying Bao’s research group to characterize several types of nanoparticles, nanostructure assemblies, and nanoparticles in composite materials with controlled properties. Their research has exciting applications in ultra-sensitive sensors, highly efficient separation techniques, and energy-related devices.

Dr. Amanda Murphy’s research group designs biomaterials made from peptides and proteins that mimic the structure of native tissues, and merge biomaterials with nanoparticles. Dr. Murphy says the JEOL “has been invaluable to our work to help determine the size and composition of the fibers we produce.”

The research group of Dr. Mark Bussell is investigating mesoporous In-Ga oxides and phosphides as photocatalysts for CO2 conversion to solar fuels (e.g. methanol).  Dr. Bussell’s group uses EDS to determine the In and Ga contents of the oxides and phosphides.  They use the JEOL FESEM to probe the morphology of the oxides and phosphides to determine particle size and uniformity, as well as to confirm the mesoporous nature of the materials to the nanometer scale.  The mesopores create large internal surface area, which is needed for surface catalyzed conversion of CO2 under light exposure.

Left: From the Bussell group, Ga2O3 catalyst particles exhibiting 3-10 nm mesopores

Top right: From the Murphy group, STEM dark-field images of electrospun silk fibers containing embedded gold nanorods

Bottom right: From the Bao Group, high resolution STEM bright-field image of silica-coated gold nanorods.

X-ray computed tomography system with 30 nm resolution

Categories: Funded Projects|

Contact:

Kelvin Lynn: kgl@wsu.edu
Washington State University
Center for Materials Research

BACKGROUND

In late 2017, Washington State University became the first university in the U.S. to own a ZEISS Xradia 810 Ultra, an x-ray microscope that has state-of-the-art capabilities producing 3D reconstructions of samples at the nanometer level.

This $1.7 million microscope was acquired through a collaborative effort between the Joint Center for Deployment and Research in Earth Abundant Materials (JCDREAM), and The M.J. Murdock Charitable Trust, and WSU funding.

The Xradia Ultra has helped WSU scientists develop specialized materials for technologies such as nuclear alloys, optimized lithium batteries, and nitrogen transport for renewable energies. Its unique capabilities enable the user to see into and interrogate their materials without destroying them. In materials engineering and materials development, this is a crucial step in understanding how the materials interact at their interfaces.

“In order to make high performance materials better or more versatile, you need to be able to characterize and control the arrangements of atoms inside them,” said Aurora Clark, professor of chemistry and principal investigator for the Xradia Ultra program. “Previously, WSU scientists had to go somewhere like the Argonne National Laboratory outside of Chicago to do the kind of imaging we will now be able to do in-house.”

The Xradia Ultra was incorporated into the equipment capabilities at WSU’s Center for Materials Research (CMR). The instrument operates as a service center and is available to all faculty and outside users. Several collaborative research projects between WSU and the Pacific Northwest National Laboratory in Richland, Wash., are in progress as well as many industry groups, such as Group14 Technologies, Ekos Medical Devices, and Material Answers which have all had samples analyzed.

Kelvin Lynn, co-principal investigator and director of the CMR, and his colleagues in the Department of Physics and Astronomy are using the instrument to improve the performance and power of materials used in solar cells and sensors. Their research could make the cost of solar power more competitive with conventional energy.

“The Xradia Ultra will benefit established research programs, enable midcareer scientists to expand their research opportunities and provide students with valuable experience operating a state-of-the-art machine,” Lynn said. “We are very grateful to the M.J. Murdock Charitable Trust and JCDREAM for helping us acquire a scientific instrument that catapults WSU materials research and education to the next level.”

Left: Carbon fiber structure of a fuel cell being optimized by faculty at WSU

Right: Zeiss Xradia 810 Ultra in CMR’s x-ray lab at WSU

Additive Manufacturing of Multi-material Structures

Categories: Funded Projects|

Contact:
Amit Bandyopadhyay: amitband@wsu.edu
Susmita Bose: sbose@wsu.edu
School of Mechanical and Materials Engineering
Washington State University, Pullman, WA 99164.

BACKGROUND

JCDREAM support was utilized to add additive manufacturing capabilities at Washington State University (WSU). WSU has had an additive manufacturing (AM) facility since 1998. Prior to JCDREAM support, WSU’s key AM capabilities included a laser engineered net shaping (LENS) system for metallic materials, an ExOne binder jetting system primarily used for ceramic materials and several fused deposition modeling based AM capability for polymeric materials. With JCDREAM support, both metal and ceramic based AM capabilities have been upgraded. Current capabilities include:

  1. A directed energy deposition (DED)-based 5-axis metal AM system from Formalloy (CA).
  2. A laser powder bed metal AM system from 3D Systems (CO).
  3. A binder jetting AM system from ExOne (PA).
  4. A Raised 3D FDM system for polymeric materials.

A microwave furnace for densification of ceramic AM parts, and a tabletop CNC for finishing metal AM parts have also been added to the capabilities to complete AM for multi-material structures. All instruments are currently at WSU.

Additive Manufacturing (AM) or Three Dimensional Printing (3DP) is a manufacturing approach where a part can be produced without using any part-specific tooling. Such an approach is ideally suited for manufacturing a small number of parts to validate a design concept or where only a few parts are needed. JCDREAM funding is utilized to establish a state-of-the-art AM laboratory where users can come and get a variety of designs printed using earth-abundant materials such as steels, titanium or different ceramics.

WSU’s AM research facilities can also be used to repair existing metallic parts or add functional coatings on them. These capabilities will be used to innovate some of the next generation multiple-material structures to streamline manufacturing approaches for complex geometries that are difficult to produce otherwise.

DED-based 5-axis AM System

Formalloy’s 5-axis DED system is equipped with a 500 Watt fiber laser, two hoppers for powder feeding and a co-axial powder feeding system. This system was installed in July 2019. Currently located in ETRL 146.

DLaser Powder-bed AM system

3D System’s selective laser melting ProX DMP 200 system. This system was installed in May 2019. Currently located in ETRL 146.

We have already started printing parts using Ti6Al4V powders with different shapes and porosities. Other powders that can be printed are – different steels, Al alloy, Inconel and Ti-alloys.

Binder jetting-based AM system

ExOne’s Innovent + binder jetting type AM system that is primarily used for AM of ceramics. This system was installed in March 2019. Currently located in ETRL 343.

We have already started printing parts using calcium phosphate-based ceramic powders using this system. Some complex shaped parts that were printed recently are shown here

FDM AM system from Raised 3D

A multi-purpose polymer-based FDM AM system. This system was installed in February 2019. Currently located in ETRL 142.

Simple and complex shape polymeric (ABS, PLA etc.) materials are currently being printed.

Tormach Multi-purpose CNC System

A multi-purpose tabletop Tormach CNC system. This system was installed in July 2019. Currently located in ETRL 142.